

PRACTICE Answer each question below. You may find it useful to rewrite the fractions in each problem as mixed numbers.

How many whole numbers are between $\frac{39}{7}$ and $\frac{44}{3}$? 68.

68.

69. Circle the fraction below that is closest to 10.

70. Write the four fractions below in order from least to greatest.

Between which two consecutive whole numbers

Between which two consecutive whole numbers is
$$\frac{50}{6} + \frac{65}{7}$$
?

72. Place < or > in the circle to compare the expressions below.

$$\frac{33}{4} + \frac{23}{7} \bigcirc \frac{15}{2} + \frac{33}{16}$$

EXAMPLE

Write $4\frac{2}{5}$ as a fraction in simplest form.

 $4\frac{2}{5}$ is two fifths more than 4, and $4 = \frac{20}{5}$.

So,
$$4\frac{2}{5} = 4 + \frac{2}{5} = \frac{20}{5} + \frac{2}{5} = \frac{22}{5}$$
.

 $\frac{22}{5}$ cannot be simplified.

Therefore, as a fraction in simplest form,

$$4\frac{2}{5} = \frac{22}{5}$$
.

PRACTICE

Write each mixed number as a fraction in simplest form.

73.
$$5\frac{1}{2}$$
=

74.
$$7\frac{2}{3}$$
 =

75.
$$11\frac{6}{7} =$$

76.
$$4\frac{4}{10}$$
=

77.
$$6\frac{4}{5}$$
 =

78.
$$9\frac{4}{9} =$$

EXAMPLE

Write the next four numbers in the skip-counting pattern below. Then, rewrite the pattern with the numbers in simplest form.

$$\frac{1}{10}$$
, $\frac{2}{10}$, $\frac{3}{10}$, , ,

We add $\frac{1}{10}$ to each number to get the next number.

$$\frac{1}{10}, \frac{2}{10}, \frac{3}{10}, \frac{4}{10}, \frac{5}{10}, \frac{6}{10}, \frac{7}{10}$$

Then, we rewrite the pattern, simplifying when possible.

$$\frac{1}{10}$$
, $\frac{1}{5}$, $\frac{3}{10}$, $\frac{2}{5}$, $\frac{1}{2}$, $\frac{3}{5}$, $\frac{7}{10}$

PRACTICE Follow the directions to complete each skip-counting pattern below.

79. Count by elevenths starting at $\frac{1}{11}$.

$$\frac{1}{11}$$
, $\frac{2}{11}$, $\frac{3}{11}$,

80. Count by eighths starting at $\frac{1}{8}$.

$$\frac{1}{8}$$
, $\frac{2}{8}$, $\frac{3}{8}$,

One the line below, write all seven numbers in the sequence above in simplest form.

81. Count by ninths starting at $\frac{4}{9}$.

$$\frac{4}{9}$$
, $\frac{5}{9}$, $\frac{6}{9}$,

On the line below, write all seven numbers in the sequence above in simplest form. Use whole or mixed numbers when possible.

PRACTICE

Complete each skip-counting pattern below. Then, rewrite the pattern with the numbers in simplest form. Use whole or mixed numbers when possible.

82. Count by fourths starting at $\frac{3}{4}$.

$$\frac{3}{4}$$
, $\frac{4}{4}$, $\frac{5}{4}$,

One the line below, write the sequence above with each number in simplest form.

83. Complete the skip-counting pattern below.

$$\frac{3}{12}$$
, $\frac{5}{12}$, $\frac{7}{12}$,

On the line below, write the sequence above with each number in simplest form.

PRACTICE

Fill in the missing numbers in each skip-counting pattern below. Write each number in simplest form, using whole or mixed numbers when possible.

85. $\frac{1}{6}$, $\frac{1}{3}$, , , $\frac{5}{6}$, , ,